Abstract

The World Health Organization (WHO) developed recommendations to control the spread of HIV-1 to include increasing the percentage of HIV positive individuals who know their HIV-1 status from 70% to 90%. Key to this goal is development of a nucleic acid based assay capable of rapidly detecting HIV-1 in non-laboratory settings. This assay detects HIV-1 RNA utilizing a modified Reverse Transcriptase-Loop Mediated Isothermal Amplification (RT-LAMP) assay followed by a novel, colorimetric Gold Nanoparticle / Peptide Nucleic Acid (AuNP/PNA) probe reporter system. This study demonstrates the proof of principle for a rapid, sequence specific, colorimetric RT-LAMP assay for the detection of HIV-1.

Figure 1: Proposed rapid, molecular HIV-1 assay. Finger stick blood from an individual is placed into the RT-LAMP reaction tube. After the RT-LAMP reaction, an aliquot is removed from the RT-LAMP tube and added to a second tube containing AuNPs and PNA. A) HIV Positive: Upon addition of the aliquot, the PNA will hybridize with the RT-LAMP generated HIV dependent amplicon allowing the AuNPs to remain monodispersed resulting in a red solution. B) HIV Negative: In the absence of the HIV dependent sequence, the PNA is free to induce AuNP aggregation resulting in a blue solution.

www.PosterPresentations.con

ASSAY FOR THE 45 MINUTE DETECTION OF HIV-1 RNA VIA MODIFIED RT-LAMP REACTION COUPLED WITH A GOLD NANOPARTICLE – PEPTIDE NUCLEIC ACID PROBE COLORIMETRIC REPORTER SYSTEM Matthew Jennings, Ph.D.¹, Paul Mann, Ph.D.¹, William Brown¹, Josh Sharp, Ph.D.¹, Robert Belton, Ph.D.¹ ¹Northern Michigan University, Marquette, MI

Materials and Methods

Colorimetric RT-LAMP Reaction

Colorimetric RT-LAMP methods utilized the WarmStart Colorimetric LAMP 2X Master Mix (New England BioLabs).

Turbidimetric RT-LAMP Reaction

Real-time turbidimetry of the RT-LAMP reaction was performed using the LoopAmp RealTime Turbidimeter LA-500 (Eiken Chemical Co.)

Primer Concentrations

Concentrations of 1.6 µM FIP, 1.6 µM BIP, 0.2 µM F3, 0.2 µM B3, 0.4uM Loop F and 0.4uM Loop R primers for LAMP reactions were performed in a 25 µL reaction at 65°C for 60 minutes.

Table 1: Oligos

Target	Primer	Sequence (5' to 3')	
HIV-1 p24	FIP (Poly T Linker)	CAGCTTCCTCATTGATGGTTTCttttTAACACCATGCTAAACACAGT	
(Curtis, 2008)	BIP (Poly T Linker)	TGTTGCACCAGGCCAGATAAttttGTACTGGTAGTTCCTGCTATG	66.3
	FIP (PNA Linker)	CAGCTTCCTCATTGATGGTTTCgtcgtcatgcttatggTAACACCATGCTAAACACAGT	68.7
	BIP (PNA Linker)	TGTTGCACCAGGCCAGATAAgtcgtcatgcttatggGTACTGGTAGTTCCTGCTATG	69.8
	F3	ATTATCAGAAGGAGCCACC	51.5
	B3	CATCCTATTTGTTCCTGAAGG	50.8
	Loop F	TTTAACATTTGCATGGGCTGCTTGAT	56.3
	Loop R	GAGATCCAAGGGGAAGTGA	53.6
HIV-1 Protease	FIP (Poly T Linker)	GGTTTCCATCTTCCTGGCAAATTttttCTCTATTAG-ATACAGGAGCAGA	64.7
(Curtis, 2008)	BIP (Poly T Linker)	TGATAGGGGGAATTGGAGGTTTtttttCCTATAGCTTTATGTCCACAGA	65.3
		GTTTCCATCTTCCTGGCAAATTgtcgtcatgcttatggCTCTAT	
	FIP (PNA Linker)	TAGATACAGGAGCAGA	68.1
		TGATAGGGGGAATTGGAGGTgtcgtcatgcttatggTTCCTATAG	
	BIP (<mark>PNA Linker</mark>)	CTTTATGTCCACAGA	68.9
	F3	AAAGATAGGGGGGCAACT	53.3
	B3	GTTGACAGGTGTAGGTCCTA	53.3
	Loop F	TATTTCTTCTAATACTGTATC	43.7
	Loop R	TATCAAAGTAAGACAGTA	41
HIV-1 Integrase	FIP (Poly T Linker)	ATTACTACTGCCCCTTCACCTTttttAGAAATCCACTTTGGAAAGGAA	66.1
	BIP (Poly T Linker)	AGTGACATAAAAGTAGTGCCAAGAAttttTCATCACCTGCCATCTGT	66.3
		ATTACTACTGCCCCTTCACCTTgtcgtcatgcttatggAGAAATCCACTTTGGAAAGGA	
	FIP (PNA Linker)	A	71.6
		AGTGACATAAAAGTAGTGCCAAGAAgtcgtcatgcttatggTCATCACCTGCCATCTG	
	BIP (PNA Linker)	т	71.1
	F3	GGACAGCGGGTTTATTACA	57.4
	B3	TGTCTACTTGCCACACAA	55.2

Figure 2: Modification to FIP/BIP Primers

AuNP/PNA Probe Detection Colorimetric detection of RT-LAMP amplicon was achieved with a two-step hybridization and detection procedure. Hybridization: A 10 µL pre-incubation mixture containing 1.5 µM of PNA (17-mer), Phosphate Buffer Saline (2 mM phosphate, 27.4 mM NaCl, and 0.54 mM KCl, at pH 7.4) and 1 µL of RT-LAMP DNA amplicon was heated at 95°C for 5 minutes.

Detection: A 10 µL aliquot of 30 nm AuNP was added for a final volume of 20 µL. The colorimetric results were visualized after 1 minute.

Figure 3: Evidence for generation of the PNA linker sequence using HIV-1 protease gene target. Using the restriction enzyme, Msl1, specific for a sequence within the generated target that is complementary to the PNA. Only RT-LAMP products containing the sequence were cut eliminating the production of the laddering migrations seen in LAMP reactions.

Table 2: Time to positive for detection of HIV-1
 Integrase by modified RT-LAMP using Eiken LA-5000 Real-Time turbidimeter.

Materials and Method (continued)

HIV Target	Time to Positive	Average T _t	
IV-1 Integrase	33:12		
IV-1 Integrase	32:48	33:00 +/- 0.21	
IV-1 Integrase	33:06		

*Samples used for AuNP/PNA Probe Detection, see figure 4.

Figure 4: Colorimetric AuNP/PNA probe detection differentiates between the polyT (-) linker and PNA (+) linker sequences. All six of the RT-LAMP reactions were positive for HIV by turbidimetry. Above are representative for HIV-1 detection. RT-LAMP with AuNP/PNA probe colorimetric detection results have been seen in as soon as 40 minutes.

137.

project.

Results (continued)

AuNP/PNA Probe Detection of HIV-1 Dependent Sequence

References

Askaravi, M., Rezatofighi, S. E., Rastegarzadeh, S., & Shapouri, M. R. S. A. (2017). AMB Express, 7(1),

- Curtis, K. A., Rudolph, D. L., Owen S.M. (2008). Journal of Virological Methods. 151, 264-270.
- Kanjanawarut, R., Su, X. (2009). Analytical Chemistry, 81(15), 6122 - 6129.
- Liang, C., Chu Y., Cheng, S., Wu, H., Kajiyama, T., Kambar, H., Zhou, G. (2012).. Analytical Chemistry. 84. 3758 - 3763.
- Notomi, T., Okayama, H., Masubuchi, H., Yonekawa, T., Watanabe, K., Amino, N., & Hase, T. (2000). Nucleic Acids Research, 28(12), e63.
- Rudolph, D. L., Sullivan, V., Owen, S. M., & Curtis, K. A. (2015). PLoS ONE, 10(5), e0126609.
- Su, X., Kanjanawarut, R., (2009). ACS Nano, 3(9), 2751 - 2759.

Acknowledgements

Thank you to Cleveland – Cliffs donation of funds for molecular research and to Steven Jennings for the schematic for HIV-1 testing. Thank you to Aaron Lewkowicz for his work on this

